Senin, 12 Mei 2014

ANALISIS REGRESI DAN ANALISIS KORELASI (BAB 9)



Analisis regresi merupakan salah satu analisis yang bertujuan untuk mengetahui pengaruh suatu variabel terhadap variabel lain. Dalam analisis regresi, variabel yang mempengaruhi disebut Independent Variable (variabel bebas) dan variabel yang dipengaruhi disebut Dependent Variable (variabel terikat). Jika dalam persamaan regresi hanya terdapat satu variabel bebas dan satu variabel terikat, maka disebut sebagai persamaan regresi sederhana, sedangkan jika variabel bebasnya lebih dari satu, maka disebut sebagai persamaan regresi berganda.

         Analisis Korelasi merupakan suatu analisis untuk mengetahui tingkat keeratan hubungan antara dua variabel. Tingkat hubungan tersebut dapat dibagi menjadi tiga kriteria, yaitu mempunyai hubungan positif, mempunyai hubungan negatif dan tidak mempunyai hubungan.
         Analisis Regresi Sederhana : digunakan untuk mengetahui pengaruh dari variabel bebas terhadap variabel terikat atau dengan kata lain untuk mengetahui seberapa jauh perubahan variabel bebas dalam mempengaruhi variabel terikat.
Dalam analisis regresi sederhana, pengaruh satu variabel bebas terhadap variabel terikat dapat dibuat persamaan sebagai berikut : Y = a + b X. Keterangan : Y : Variabel terikat (Dependent Variable); X : Variabel bebas (Independent Variable); a : Konstanta; dan b : Koefisien Regresi. Untuk mencari persamaan garis regresi dapat digunakan berbagai pendekatan (rumus), sehingga nilai konstanta (a) dan nilai koefisien regresi (b) dapat dicari dengan metode sebagai berikut :
a = [(ΣY . ΣX2) – (ΣX . ΣXY)] / [(N . ΣX2) – (ΣX)2] atau a = (ΣY/N) – b (ΣX/N)
b = [N(ΣXY) – (ΣX . ΣY)] / [(N . ΣX2) – (ΣX)2]

Contoh :
Sampel yang diambil secara acak dari 5 mahasiswa, didapat data nilai Statistik dan Matematika sebagai berikut :
Sampel
X (statistik)
Y (matematika)
XY
X2
Y2
1
2
3
6
4
9
2
5
4
20
25
16
3
3
4
12
9
16
4
7
8
56
49
64
5
8
9
72
64
81
Jumlah
25
28
166
151
186
r = [(N . ΣXY) – (ΣX . ΣY)] / √{[(N . ΣX2) – (ΣX)2] . [(N . ΣY2) – (ΣY)2]}
r = [(5 . 166) – (25 . 28) / √{[(5 . 151) – (25)2] . [(5 . 186) – (28)2]} = 0,94

Nilai koefisien korelasi sebesar 0,94 atau 94 % menggambarkan bahwa antara nilai statistik dan matematika mempunyai hubungan positif dan hubungannya erat, yaitu jika mahasiswa mempunyai nilai statistiknya baik maka nilai matematikanya juga akan baik dan sebaliknya jika nilai statistik jelek maka nilai matematikanya juga jelek.

ANALISIS VARIANSI (BAB 8)



Analisis varians (analysis of variance, ANOVA) adalah suatu metode analisis statistika yang termasuk ke dalam cabang statistika inferensi. Dalam literatur Indonesia metode ini dikenal dengan berbagai nama lain, seperti analisis ragam, sidik ragam, dan analisis variansi. Ia merupakan pengembangan dari masalah Behrens-Fisher, sehingga uji-F juga dipakai dalam pengambilan keputusan. Analisis varians pertama kali diperkenalkan oleh Sir Ronald Fisher, bapak statistika modern. Dalam praktik, analisis varians dapat merupakan uji hipotesis (lebih sering dipakai) maupun pendugaan (estimation, khususnya di bidang genetika terapan).
Secara umum, analisis varians menguji dua varians (atau ragam) berdasarkan hipotesis nol bahwa kedua varians itu sama. Varians pertama adalah varians antarcontoh (among samples) dan varians kedua adalah varians di dalam masing-masing contoh (within samples). Dengan ide semacam ini, analisis varians dengan dua contoh akan memberikan hasil yang sama dengan uji-t untuk dua rerata (mean).
Supaya sahih (valid) dalam menafsirkan hasilnya, analisis varians menggantungkan diri pada empat asumsi yang harus dipenuhi dalam perancangan percobaan:
  1. Data berdistribusi normal, karena pengujiannya menggunakan uji F-Snedecor
  2. Varians atau ragamnya homogen, dikenal sebagai homoskedastisitas, karena hanya digunakan satu penduga (estimate) untuk varians dalam contoh
  3. Masing-masing contoh saling bebas, yang harus dapat diatur dengan perancangan percobaan yang tepat
  4. Komponen-komponen dalam modelnya bersifat aditif (saling menjumlah).
Analisis varians relatif mudah dimodifikasi dan dapat dikembangkan untuk berbagai bentuk percobaan yang lebih rumit. Selain itu, analisis ini juga masih memiliki keterkaitan dengan analisis regresi. Akibatnya, penggunaannya sangat luas di berbagai bidang, mulai dari eksperimen laboratorium hingga eksperimen periklanan, psikologi, dan kemasyarakatan.

RINGKASAN MENGENAI PENGUJIAN HIPOTESIS (BAB 7)



Uji hipotesis adalah metode pengambilan keputusan yang didasarkan dari analisis data, baik dari percobaan yang terkontrol, maupun dari observasi (tidak terkontrol). Dalam statistik sebuah hasil bisa dikatakan signifikan secara statistik jika kejadian tersebut hampir tidak mungkin disebabkan oleh faktor yang kebetulan, sesuai dengan batas probabilitas yang sudah ditentukan sebelumnya.
Uji hipotesis kadang disebut juga "konfirmasi analisis data". Keputusan dari uji hipotesis hampir selalu dibuat berdasarkan pengujian hipotesis nol. Ini adalah pengujian untuk menjawab pertanyaan yang mengasumsikan hipotesis nol adalah benar.[2]
Hipotesis statistik
Sebuah pernyataan tentang parameter yang menjelaskan sebuah populasi (bukan sampel).
Statistik
Angka yang dihitung dari sekumpulan sampel.
Sebuah hipotesis yang berlawanan dengan teori yang akan dibuktikan.
Hipotesis alternatif (H1) atau hipotesis kerja (Ha)
Sebuah hipotesis (kadang gabungan) yang berhubungan dengan teori yang akan dibuktikan.
Tes Statistik
Sebuah prosedur yang masukannya adalah sampel dan hasilnya adalah hipotesis.
Daerah penerimaan
Nilai dari tes statistik yang menggagalkan untuk penolakan hipotesis nol.
Daerah penolakan
Nilai dari tes statistik untuk penolakan hipotesis nol.
Kekuatan Statistik (1 − β)
Probabilitas kebenaran pada saat menolak hipotesis nol.
Tingkat signifikan test (α)
Probabilitas kesalahan pada saat menolak hipotesis nol.
Nilai P (P-value)
Probabilitas, mengasumsikan hipotesis nol benar.
Interpretasi
Jika nilai p lebih kecil dari tingkat signifikan tes yang diharapkan, maka hipotesis nol bisa ditolak. Jika nilai p tidak lebih kecil dari tingkat signifikan tes yang diharapkan bisa disimpulkan bahwa tidak cukup bukti untuk menolak hipotesa nol, dan bisa disimpulkan bahwa hipotesa alternatif yang benar.
Prosedur uji hipotesis
  1. Tentukan parameter yang akan diuji
  2. Tentukan Hipotesis nol (H0)
  3. Tentukan Hipotesis alternatif (H1)
  4. Tentukan (α)
  5. Pilih statistik yang tepat
  6. Tentukan daerah penolakan
  7. Hitung statistik uji
  8. Putuskan apakah Hipotesis nol (H0) ditolak atau tidak
Contoh uji hipotesis
Seorang yang dituduh pencuri dihadapkan kepada seorang hakim. Seorang hakim akan menganggap orang tersebut tidak bersalah, sampai kesalahannya bisa dibuktikan. Seorang jaksa akan berusaha membuktikan kesalahan orang tersebut.
Dalam kasus ini, hipotesis nol (H0) adalah: "Orang tersebut tidak bersalah", dan hipotesis alternatif (H1) adalah: "Orang tersebut bersalah". Hipotesis alternatif (H1) inilah yang akan dibuktikan.
Ada dua kondisi yang mungkin terjadi terhadap orang tersebut:
  1. Orang tersebut tidak bersalah.
  2. Orang tersebut bersalah.
Dan ada dua keputusan yang bisa diambil hakim:
  1. Melepaskan orang tersebut.
  2. Memenjarakan orang tersebut.

Hipotesis nol (H0) benar
(Orang tersebut tidak bersalah)
Hipotesis alternatif (H1) benar
(Orang tersebut bersalah)
Menerima hipotesis nol
(Orang tersebut dibebaskan)
Keputusan yang benar
Keputusan yang salah
(Kesalahan Tipe II)
Menolak hipotesis nol
(Orang tersebut dipenjara)
Keputusan yang salah
(Kesalahan Tipe I)
Keputusan yang benar.
Dalam kasus ini, ada dua kemungkinan kesalahan yang dilakukan hakim:
  1. Memenjarakan orang yang benar (Kesalahan Tipe I)
  2. Melepaskan orang yang bersalah (Kesalahan Tipe II)
 narasumber : Cramer, Duncan; Dennis Howitt (2004). The Sage Dictionary of Statistics. hlm. 76. ISBN 076194138X . 
 Lehmann, E.L.; Romano, Joseph P. (2005). Testing Statistical Hypotheses (ed. 3E). New York: Springer. ISBN 0387988645.